Research Highlights in Nature Materials for our paper on the controlled transport of single atoms by an electronically driven molecular nanostructure
Aug. 27, 2015
Cover
©None

A paper recently published in ACS Nano by members of our chair has been presented as Research Highlights in Nature MaterialsThe work by Robin Ohmann, Jörg Meyer, Anja Nickel, Jorge Echeverria, Maricarmen Grisolia, Christian Joachim, Francesca Moresco, Gianaurelio Cuniberti with the title Supramolecular Rotor and Translator at Work: On-Surface Movement of Single Atoms describes how an electronically driven supramolecular structure can generate work by moving atomic-size loads. Link to the paper

The abstract reads as follows: A supramolecular nanostructure composed of four 4-acetylbiphenyl molecules and self-assembled on Au (111) was loaded with single Au adatoms and studied by scanning tunneling microscopy at low temperature. By applying voltage pulses to the supramolecular structure, the loaded Au atoms can be rotated and translated in a controlled manner. The manipulation of the gold adatoms is driven neither by mechanical interaction nor by direct electronic excitation. At the electronic resonance and driven by the tunneling current intensity, the supramolecular nanostructure performs a small amount of work of about 8x10E 21 J, while transporting the single Au atom from one adsorption site to the next. Using the measured average excitation time necessary to induce the movement, we determine the mechanical motive power of the device, yielding about 3x10E 21 W.

Link to the article

Research Highlights in Nature Materials for our paper on the controlled transport of single atoms by an electronically driven molecular nanostructure
Aug. 27, 2015
Cover
©None

A paper recently published in ACS Nano by members of our chair has been presented as Research Highlights in Nature MaterialsThe work by Robin Ohmann, Jörg Meyer, Anja Nickel, Jorge Echeverria, Maricarmen Grisolia, Christian Joachim, Francesca Moresco, Gianaurelio Cuniberti with the title Supramolecular Rotor and Translator at Work: On-Surface Movement of Single Atoms describes how an electronically driven supramolecular structure can generate work by moving atomic-size loads. Link to the paper

The abstract reads as follows: A supramolecular nanostructure composed of four 4-acetylbiphenyl molecules and self-assembled on Au (111) was loaded with single Au adatoms and studied by scanning tunneling microscopy at low temperature. By applying voltage pulses to the supramolecular structure, the loaded Au atoms can be rotated and translated in a controlled manner. The manipulation of the gold adatoms is driven neither by mechanical interaction nor by direct electronic excitation. At the electronic resonance and driven by the tunneling current intensity, the supramolecular nanostructure performs a small amount of work of about 8x10E 21 J, while transporting the single Au atom from one adsorption site to the next. Using the measured average excitation time necessary to induce the movement, we determine the mechanical motive power of the device, yielding about 3x10E 21 W.

Link to the article